Volltextsuche

Top Suchbegriffe



Donnerstag, den 26. Januar 2023 um 04:45 Uhr

James-Webb-Weltraumteleskop identifiziert Herkunft eisiger Bausteine des Lebens

Interstellare Molekülwolken gelten als Wiegen von Planetensystemen. Ein internationales Forschungsteam unter Beteiligung des Center for Space and Habitability (CSH) der Universität Bern und des Nationalen Forschungsschwerpunkt (NFS) PlanetS entdeckt mithilfe des James-Webb-Weltraumteleskops das tiefst gelegene und kälteste Eis, das je in einer solchen Molekülwolke nachgewiesen wurde. Der Fund ermöglicht der Astronomie neue Einblicke in die eisigen Bestandteile, die im Verlauf der Zeit in Planeten eingebaut werden und dort letztlich die Grundlage für Leben bilden könnten.

In einer neuen Studie hat ein internationales Forschungsteam, unter Beteiligung der Universität Bern und des Nationalen Forschungsschwerpunkt (NFS) PlanetS, nun tiefer in einer solchen Molekülwolke Eis entdeckt als jemals zuvor. Gleichzeitig handelt es sich mit einer Temperatur von etwa minus 263 Grad Celsius (oder etwa zehn Grad über dem absoluten Nullpunkt) um das kälteste je gemessene Eis. Die Ergebnisse wurden im Fachmagazin Nature Astronomy veröffentlicht.

Eine Fülle an Eissorten

«Dies ist das erste Mal, dass Forschende in der Lage waren, die Zusammensetzung sogenannt prästellarer Eissorten nahe dem Zentrum einer Molekülwolke zu untersuchen», sagt Melissa McClure, Astronomin am Leiden Observatory und Hauptautorin der Studie. «Neben eher simplen Eissorten wie Wasser, Kohlendioxid, Kohlenmonoxid, Ammoniak und Methan konnten wir auch einige weitere Verbindungen identifizieren, darunter das komplexere organische Methanoleis.»

Die Messungen, die das Team mithilfe des James-Webb-Weltraumteleskop der NASA, ESA und der Kanadischen Weltraumorganisation CSA durchführte, ermöglichen der Forschungsgemeinschaft beispiellose Einblicke in die Fülle an eisigen Verbindungen, die sich im Inneren interstellarer Molekülwolken befinden – und in der Folge in daraus entstandene Sterne und Planeten eingelagert werden können.

Notwendige Präzision

«Die unterschiedlichen Eismoleküle erkennen wir anhand ihres sogenannten Absorptionsspektrums. Diesen chemischen Fingerabdruck hinterlassen sie im Hintergrundsternenlicht, welches durch die Wolke hindurch auf das Teleskop scheint», erklärt Studienmitautorin und Forscherin am NFS PlanetS und der Universität Bern, Maria Drozdovskaya. Sie ist Teil des Team Ice Age Projektteams, das aus 50 Expertinnen und Experten aus den Bereichen Astrochemie, Laborastrophysik, zur Sternentstehung und dem interstellare Medium aus 10 Ländern besteht (siehe auch Infobox).

In dieser Studie konzentrierte sich das Team auf die über 500 Lichtjahre von der Erde entfernte Molekülwolke «Chameleon I», in welcher sich derzeit Dutzende von jungen Sternen bilden. Sie befinden sich nahe dem Zentrum, in einer besonders kalten, dichten und deshalb schwer zu untersuchenden Region. «Nur mit den hochpräzisen Infrarot-Spektrographen (NIRSpec und MIRI) des Webb, die Strahlung dieser Wellenlängen exakt detektieren und aufschlüsseln können, waren diese Messungen möglich», so die Astronomin.

Enthalten Planeten die Zutaten des Lebens von Beginn an?

Doch die Messungen gewährten dem Forschungsteam nicht nur nie dagewesene Einblicke, sondern stellten es auch vor neue Rätsel. «Wir konnten nicht nur das Vorkommen dieser Stoffe messen, sondern auch die Häufigkeit einiger Elemente, die in den eisigen Verbindungen enthalten sind», erklärt Drozdovskaya. Bei diesen Elementen handelt es sich um Kohlenstoff, Wasserstoff, Sauerstoff, Stickstoff und Schwefel, die das Team (nach ihrer englischen Bezeichnung) unter dem Begriff CHONS zusammenfasst. «Diese Elemente sind wichtige Bestandteile präbiotischer Moleküle wie einfacher Aminosäuren – und damit sozusagen Zutaten des Lebens», so Drozdovskaya. Doch das Team fand weniger von diesen Elementen als im Vergleich mit der Dichte der Wolke. Dies deutet darauf hin, dass diese Elemente nicht ausschliesslich in den eisigen Bestandteilen der Molekülwolken vorkommen, sondern auch anderswo lauern könnten.

«Die Tatsache, dass uns ein Teil des CHONS-Budgets ‘fehlt’, könnte bedeuten, dass CHONS etwa in felsigen Staubpartikeln eingeschlossen sind», erklärt Melissa McClure. «Dies könnte eine grössere Vielfalt in der Zusammensetzung terrestrischer Planeten ermöglichen.» Die Identifizierung komplexer organischer Moleküle wie Methanol und möglicherweise Ethanol durch das Team deutet auch darauf hin, dass die vielen Stern- und Planetensysteme, die sich in dieser speziellen Wolke entwickeln, die Moleküle aus der Molekülwolke in einem ziemlich fortgeschrittenen chemischen Zustand übernehmen.

«Dies könnte bedeuten, dass das Vorhandensein präbiotischer Moleküle in Planetensystemen ein häufiges Ergebnis der Sternentstehung ist und nicht nur ein einzigartiges Merkmal unseres Sonnensystems», so McClure.


Den Artikel finden Sie unter:

https://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2023/medienmitteilungen_2023/james_webb_weltraumteleskop_identifiziert_herkunft_eisiger_bausteine_des_lebens/index_ger.html

Quelle: Universität Bern (01/2023)


Publikation:
M. K. McClure et al., An Ice Age JWST inventory of dense molecular cloud ices , Nature Astronomy, January 2023
DOI: 10.1038/s41550-022-01875-w

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.