Können große Moleküle aus Metall aromatisch sein? Ja, hat ein deutsch-französisches Team aus der Chemie festgestellt: Es erzeugte ein aromatisches Molekül, das ausschließlich aus Metallatomen besteht, aber die Eigenschaften klassischer aromatischer Verbindungen in den Schatten stellt. Die Gruppe um die Marburger Chemieprofessorin Dr. Stefanie Dehnen und Dr. Florian Weigend berichtet über ihre Ergebnisse in der Fachzeitschrift „Nature Chemistry“.

„Normalerweise kennt man das Konzept der Aromatizität aus der organischen Chemie“, erklärt Dehnens Mitarbeiter Armin Eulenstein. Der Begriff geht ursprünglich auf den Duft von Kohlenwasserstoffverbindungen zurück, die einen ...
Die Qualität von Erdgas unterliegt starken Schwankungen. Nicht nur unterschiedliche Erdgasvorkommen sind dafür verantwortlich, sondern zunehmend auch die Einspeisung von Wasserstoff aus Power-to-Gas-Anlagen. Zur Brenngasanalyse hat Fraunhofer IPM zusammen mit der RMA Mess- und Regeltechnik GmbH & Co KG ein Messsystem entwickelt, das neben den enthaltenen Kohlenwasserstoffen nun auch den Wasserstoffanteil im Gas erkennt.

Mit der Zusammensetzung des Gases schwankt auch der Brennwert. Für Verbraucher ist die Gaszusammensetzung eine wichtige Größe, denn der Gaspreis wird auf Basis des gelieferten Volumens und des Brennwerts bestimmt. In der Industrie kommt ein weiterer Aspekt hin...
Fast täglich rufen Hersteller Lebensmittel zurück, weil sie Verunreinigungen enthalten. Auch trockene Waren, die wegen ihres Mangels an Wasser als sicher gelten, werden regelmäßig aus dem Handel genommen. Während der Verarbeitung können sich an diesen Lebensmitteln schädliche Mikroorganismen wie Salmonellen ansiedeln. Dazu gehören etwa Mandeln, die besonders zu Weihnachten gern gekauft werden. Mit einem neuen Verfahren des Fraunhofer-Instituts für Umwelt, Sicherheits- und Energietechnik UMSICHT lassen sich Keime auf Mandeln und Nüssen abtöten. Der Trick: Die Forscherinnen und Forscher verwenden komprimiertes Kohlendioxid zur Dekontamination.

Laut Verbraucherschutzzentrale ...
Silicone haben sich im privaten und im professionellen Bereich bewährt. Damit aus dem flüssigen Vorprodukt das elastische und haltbare Polymer wird, benötigt man jedoch in vielen Fällen teure Edelmetalle als Katalysatoren. Einem Forschungsteam der Technischen Universität München (TUM) und des Münchner WACKER-Konzerns ist es nun gelungen, einen Vernetzungsprozess zu entwickeln, der ohne Edelmetalle auskommt.

Als Silicone bezeichnet man synthetische Polymere, die aus einem anorganischen und durch organische Reste modifizierten Silicium-Sauerstoff-Grundgerüst bestehen. Vor der Verwendung wird das Silicon durch chemische Vernetzung in einen gummielastischen Zustand überführt.
Mehr als ein Viertel aller Proteine einer Zelle finden sich in den Membranen. Dort haben sie lebenswichtige Funktionen. Um ihre Aufgabe zu erfüllen, müssen Membranproteine von ihrer Produktionsstätte in der Zelle sicher zu ihrem Bestimmungsort transportiert und korrekt in die Zielmembran eingebaut werden. Wissenschaftlern des Biochemie-Zentrums der Universität Heidelberg (BZH) ist es gelungen, die dreidimensionale Struktur einer molekularen Maschine zu entschlüsseln, die für den korrekten Einbau einer wichtigen Familie von Membranproteinen – die sogenannten „tail-anchored“-Membranproteine oder kurz TA-Proteine – zuständig ist.

Ein erwachsener Mensch besteht aus schätzu...
Forschenden der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), des Schweizer Paul-Scherrer-Instituts und weiterer Einrichtungen aus Paris, Hamburg und Basel ist ein Rekord in der Röntgenmikroskopie gelungen: Mit verbesserten Beugungslinsen und exakterer Positionierung der Proben erreichten sie eine räumliche Auflösung im einstelligen Nanometerbereich. Diese neue Dimension der direkten Bildgebung könnte wichtige Impulse für die Erforschung von Nanostrukturen geben und beispielsweise die Entwicklung von Solarzellen und neuartigen magnetischen Datenspeichern vorantreiben. Die Ergebnisse wurden unter dem Titel „Soft x-ray microscopy with 7 nm resolution“ veröffentlicht.
...
Bisherige Corona-Schnelltests beruhen auf bekannten Nachweisverfahren, wie sie auch schon für andere Viren verwendet wurden. An der TU Wien wurde nun allerdings eine neuartige Testmethode entwickelt, die auf einem veränderten Messprinzip beruht. Diese Methode kann deutlich schneller ein Ergebnis liefern als bisher, außerdem ist sie extrem sensitiv: Drei bis fünf Viren genügen bereits, um verlässlich ein Signal zu erzeugen. Die Gefahr von falsch-negativen Ergebnissen wird dadurch minimiert.

Das neue Verfahren wurde bereits zum Patent angemeldet. Einige Monate Entwicklungszeit werden bis zum marktreifen Prototyen noch vergehen. Danach, so hofft das Forschungsteam, könnte der neue...
Das Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, hat am 25.11.2020 die erste klinische Prüfung der Phase 1 eines Peptid-Impfstoffs gegen COVID-19 in Deutschland genehmigt. Der Impfstoff stimuliert hochspezifisch die T-Zell-Antwort. Diese Zellen des Immunsystems erkennen und zerstören SARS-CoV-2-infizierte Zellen – ein wichtiges Komplementärsystem zur humoralen Immunantwort durch neutralisierende Antikörper. „Der Peptid-Impfstoff ergänzt das Portfolio der COVID-19-Impfstoffplattformen um einen weiteren vielversprechenden Ansatz“, so Professor Klaus Cichutek, Präsident des Paul-Ehrlich-Instituts.

Die Bereitstellung zugelassener sich...
Bioinformatiker der Friedrich-Schiller-Universität Jena haben gemeinsam mit Kollegen aus Finnland und den USA eine weltweit einmalige Methode entwickelt, bei der alle Metaboliten in einer Probe berücksichtigt werden können und sich somit der Erkenntnisgewinn bei der Untersuchung solcher Moleküle erheblich vergrößert.
Alles, was lebt, hat Metabolite, produziert Metabolite und verbraucht Metabolite. Diese Moleküle gehen als Zwischen- und Endprodukte aus chemischen Prozessen innerhalb des Stoffwechsels eines Organismus hervor. Damit haben sie nicht nur eine enorme Bedeutung für unser Leben, sondern sie liefern auch wertvolle Informationen über den Zustand eines Lebewesens oder eine...
Mit Infrarotlicht kann man viele wichtige Moleküle nachweisen – doch starke, kurze Laserpulse in diesem Bereich waren bisher nur mit großem Aufwand möglich. An der TU Wien fand man eine Lösung.

Gewöhnliche Festkörperlaser, wie man sie von Laser-Pointern kennt, erzeugen Licht im sichtbaren Bereich. Für viele Anwendungen, etwa zum Detektieren von Molekülen, braucht man allerdings Strahlung im mittleren Infrarotbereich. Solche Infrarot-Laser sind deutlich schwieriger herzustellen, besonders dann, wenn man die Laserstrahlung in Form von extrem kurzen, intensiven Pulsen benötigt.

Lange wurde nach Methoden gesucht, solche Infrarot-Laserpulse zu produzieren – an der TU Wi...
Seite 7 von 80

Fortbildungen

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.