Volltextsuche

Top Suchbegriffe



Mittwoch, den 01. Dezember 2010 um 09:15 Uhr

Eine molekulare Taschenlampe

Die Arbeit der Forscherteams um den Chemiker Prof. Marcel Mayor (KIT und UB) und den Physikern Dr. Ralph Krupke (KIT) und Prof. Hilbert v. Löhneysen (KIT) stellt einen wichtigen Beitrag dar für die Entwicklung neuer optoelektronischer Bauelemente auf Basis einzelner Moleküle. In diesem Verfahren werden maßgeschneiderte Moleküle mit Leuchtkern zwischen Nanoröhrenelektroden aus Kohlenstoff platziert und elektrisch angesteuert. Als Nachweis der molekularen Elektrolumineszenz dient der spektroskopische Fingerabdruck des Moleküls. Sowohl die Moleküle als auch die Elektroden aus Kohlenstoff-Nanoröhren wurden von den Forschern eigens für dieses Verfahren entwickelt.
Molekulare Elektronik befasst sich mit dem Ladungstransport durch Moleküle. Langfristiges Ziel ist die Entwicklung molekularer Schaltkreise für leistungsfähige und energieeffiziente Computer. Die aktuelle Arbeit weist nach, dass einzelne, fest verdrahtete Moleküle elektrisch zum Leuchten angeregt werden können - diese für die Grundlagenforschung wichtige Erkenntnis erweitert die Vision der molekularen Elektronik um eine optoelektronische Komponente.

Für die Forscher bestand die besondere Herausforderung darin, sogenannte bottom-up Strukturen (Moleküle) in top-down Strukturen (Elektroden) zu integrieren und dabei die kritischen Abmessungen zu beherrschen. Um Ladungstransport und Lichtemission zu ermöglichen, müssen die elektronischen und optischen Eigenschaften von Molekül und Nanoröhrenelektroden aufeinander abgestimmt sein.

Die von den Teamkollegen Dr. Sergio Grunder und Dr. Alfred Błaszczyk synthetisierten 7.5nm langen stäbchenförmigen Moleküle mit lichtaktiven Kern und die von Dr. Frank Hennrich in der Arbeitsgruppe von Prof. Manfred Kappes (KIT) aufbereiteten Kohlenstoff-Nanoröhren erfüllten diese Anforderungen. Durch kontrollierte strominduzierte Oxidation gelang es Dr. Christoph W. Marquard, Nanoröhren-Elektroden mit winziger Lücke (<10nm) zu erzeugen. Die in Lösung befindlichen Moleküle werden dann mittels Dielektrophorese, einer Feld-induzierten Form der Selbstorganisation, zwischen die Nanoröhrenelektroden abgeschieden.

Für die ausreichende Stabilität der Nanoröhren-Molekül-Nanoröhren Kontakte sorgen spezielle Ankergruppen an den Molekülenden. Wird an einen solchen Kontakt eine Spannung von einigen Volt angelegt, leuchtet das Molekül. Mit Hilfe eines empfindlichen Mikroskopaufbaus konnten die Forscher dieses Licht detektieren und nachweisen, dass es aus dem Kern des Moleküls emittiert wird. Die Arbeit erscheint als Advanced Online Publication (AOP) in der renommierten Zeitschrift Nature Nanotechnology.


Den Artikel finden Sie unter:

http://www.kit.edu/besuchen/pi_2010_4291.php

Quelle: Karlsruher Institut für Technologie (11/2010)


Literatur:
Christoph W. Marquardt, Sergio Grunder, Alfred Błaszczyk, Simone Dehm, Frank Hennrich, Hilbert v. Löhneysen, Marcel Mayor, and Ralph Krupke: Electroluminescence from a single nanotube-molecule-nanotube junction. Nature Nanotechnology, published online 28. November 2010 | doi 10.1038/NNANO.2010.230

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.